
Unit II

Decision Making and Branching: simple if, if else, if else ladder,

nested if, switch, nested switch-syntax, flowchart, and example

programs.

Decision Making and Looping: while, do-while, for statements, nested

loops-syntax, flowchart, and example programs.

Unconditional Branching Statements: break, continue and go to-

syntax, flowchart, and example programs

Class 9: Iterative statements (Looping

statements)

• In looping, a sequence of statements are executed until some

conditions for termination of the loop are satisfied.

• A program loop consists of two parts.

 Body of the loop

 Control statement

• The control statement tests certain conditions and then

directs the repeated execution of the statements contained

in the body of the loop.

• Depending on the position of the control statement in the

loop, a control structure may be classified as the

entry-controlled loop (pre test) or as

exit-controlled loop (post-test).

• The C-language provides three constructs for performing

loop operations. They are

1. while loop (pre test)

2. do-while loop (post-test)

3. for loop (pre test)

While Loop

• In while loop, the condition is tested before any of the

statements in the statement block is executed.

• If the condition is true, only then the statements will be

executed otherwise the control will jump to the immediate

statement outside the while loop block.

Syntax:

while (condition)

{

statement_block;

}

statement x; Test

condition

Body of the

loop

True

False

Fig: Entry controlled loop (while)

 Program to print 1 to 10 numbers

main()

{

int i=1;

while(i<=10)

{

printf(“%d”, i);

i++;

}

}

To print 1 to n numbers
main()

{

int i, n;

printf(“Enter n”);

scanf(“%d”, &n);

i=1;

while(i<=n)

{

printf(“%d”, i);

i++;

}

Output: Enter n 5

1 2 3 4 5

Loop programs
1. Write a C program to print 1 to n numbers

2. Write a C program to find sum and average of n numbers.

3. Write a C program to find factorial of given number

4. Write a C program to check whether given number is prime

or not

5. Write a C program to find reverse of the given number

6. Write a C program to find sum of individual digits of

number

7. Write a C program to check given number is palindrome or

not

8. Write a C program to check given number is Armstrong or

not

 sum of n numbers
sum=0,i=1;

while(i<=n)

{

sum=sum+i;

i++;

}

print sum

 Factorial of a number

fact=1;

while(i<=n)

{

fact=fact*i;

i++;

}

print fact

 Reverse of given number

while(n>0)

{

x=n%10;

printf(“%d”, x);

n=n/10;

}

 Reverse of given number

rev=0;

while(n>0)

{

x=n%10;

rev=rev*10+x;

n=n/10;

}

5. Sum of individual numbers in a

numbers

sum=0;

while(n>0)

{

x=n%10;

sum=sum + x;

n=n/10;

}

 ARMSTRONG number

arm=0;

m=n;

while(n>0)

{

x=n%10;

arm=arm+(x*x*x);

n=n/10;

}

if(m= =n)

print it is Armstrong

else

print it is not an Armstrong

 check given number is prime

or not
count=0,i=1;
while(i<=n)

{
if(n%i==0)
count++;
i++;

}
if (count==2)

print it is prime;

else

it is not prime;

do-while Loop

• The do-while loop is similar to the while loop. The only difference is

that in a do-while loop, the test condition is tested at the end of the

loop and terminates with a semicolon.

• The body of the loop gets executed at least one time (even if the

condition is false). The do while loop continues to execute while a

condition is true.

• Do-while loops are widely used to print a list of options for a menu

driven program.

Syntax:

do

{

statement_block;

} while (condition);

statement y;

Test

condition

Body of the

loop

False

True

Fig: Exit controlled loop (do-while)

 Program to print 1 to 10 numbers using do-while loop

main()

{

int i=1;

do

{

printf(“%d”, i);

i++;

} while(i<=10);

}

• do-while loop

i=11;

do

{ printf(“%d”, i);
i++;

}while(i<=10);

o/p: 11

while loop

i=11;

while(i<=10)

{
printf(“%d”, i);

i++;

}

o/p: no output

for Loop

• Like the while and do-while loop, the for loop is used to repeat a task

until a particular condition is true.

• The syntax of a for loop

for (initialization; condition; updation)

{

body of the loop

}

• The execution of the for statement is as follows:

1. Initialization of the control variable is done first and is initialized only

once using assignment statement such as i=1.

2. The condition such as i>10 determines when the loop will exit. If the

condition is true, the body of the loop is executed; otherwise the loop

is terminated

3. When the body of the loop is executed, the control is transferred back

to the for statement after evaluating the last statement in the loop.

Now, the control variable is incremented /decremented such as

i++,i-=2 and the new value is again tested to see whether it satisfies

the loop condition. If the condition is satisfied, the body of the loop is

again executed. This process continues till the value of the control

variable fails to satisfy the test-condition.

Body of the

loop

True

False

Fig: for loop

initialization

updation

condition

 Program to print 1 to 10 numbers using for

loop

main()

{

int i;

for(i=1 ; i<=10 ; i++)

printf(“%d”, i);

}

1. Write a C program to print fibonacci series (0112358..)

2. Write a C program to find sum of even numbers and odd

numbers in a given range

3. Write a C program to find sum of the 1+ 22+33+………nn

series

4.Write a C program to find sum of the 1+1/2+1/3+………1/n

series

5.Write a C program to find sum of the

1+1/1!+1/2!+1/3!+………1/n! series

6. Write a C program to find sum of x + x2/2 + x3/3 + ………

series

7. Write a C program to find sum of x -x3/3!+x5/5!+………

series

8.Write a C program to print Pascal triangle

9.Write a C program to print prime numbers between 1 and n

10. Write a C program to print Armstrong numbers between 1

and n

11.Write a program to find gcd of two numbers

12. Write a program to find lcm of two numbers

13.Write a program to find factorial of a number

14. Write a program to check whether given number is

prime or not

 Fibonacci series
int i, f1 = 0, f2 = 1, t = 0, n;

read n;

print f1,f2;

for(i=3; i<=n; i++)

{

t=f1+f2;

f1=f2;

f2=t;

}

print t;

 Sum of odd and even numbers in a range

i=1,esum=0,osum=0;

while(i < = n)

{

if(i%2= =0)

esum+=i;

else

osum+=i;

i++;

}

print esum, osum

 Sum of series like 1+(1/2)+(1/3)+(1/4)+...

n= last number in series

for(i=1; i<=n ; i++)

{

sum=sum+(1.0/i);

}

print sum

 Sum of series like x +x2/2+x3/3+………

int i, n, x;

float product=1.0,sum=0;

for(i=1;i<=n;i++)

{

product=product*x;

sum=sum+(product/i);

}

print sum

Sum of series like x -

x3/3!+x5/5!+………
Read n, x;

float sum=0,k=1;

k=x, sum=x;

for(i=3;i<=n; i+=2)

{

k=(-k*x*x)/(i*(i-1));

sum=sum + k;

}

Print sum;

 Prime numbers in a range…
printf("\n The List of prime numbers between %d-%d",j,k);

for(;j<=k;j++,count=0)

{

for(i=1;i<=j;i++)

{

if(j%i==0)

count++;

}

if(count==2)

{

printf("\t%d",j);

}

}

 Armstrong numbers in a range
read range j,k

for(; j<=k ; j++,arm=0)

{

for(i = j; i>0 ; i = i/10)

{

x=i%10;

arm=arm+x*x*x;

}

if (arm = = j)

print arm

}

Gcd of two numbers

while(y!=0)

{

r=x%y;

y=r;

x=y

}

printf(“gcd=%d”,x);

lcm of two numbers

x * y = gcd * lcm

so lcm = x * y / gcd

